
1.
2.
3.
4.

How to Jedi with the Force
By Alex Shilts, Cohort 23

G-Sidious approves your tutorial choice, but not your youngling murder count.

So, you want to make Gordon Freeman a Jedi? That's kind of weird thing to specifically want, but okay! I guess I'll run you through it.

In this How To Jedi tutorial, I'll be assuming that you have a passing understanding of the Hammer editor, namely how to , create Entities conver
, and . After the first few classes of LD6, you should be close enough fort BSP to the func_ generally work with Hammers "scripting system"

government work. If you aren't attending the SMU Guildhall and don't have those skills at least to a 3rd grade level, this(why are you even here?)
tutorial may be a bit headsplodingly overwhelming. Don't get brain juice on your friends, go read more basic guides.

A quick note: Full disclosure, Hammer is an awesome but quirky editor. You will connect a lot of very logical solutions to your
problems, and they won't work because of some weird way the Source engine handles things.

I also noticed how many students solve the same problems over and over again in the same way, losing the same amount of
time. To help alleviate this, I'm going to have:

 HIGHLIGHTED HAMMER QUIRKS! *Fanfare

If you see bold red text anywhere in a section, it indicates a strange little "thing" in the engine that a lot of people struggle with

that seems obvious but is actually convoluted. Hopefully this will help!

ALRIGHT GUYS, LETS DO THIS.

Click on Image for link

So you want to be a Jedi, kid? Well, woop-de-doo.

...so do I, but in this tutorial we only focus on 4 aspects related to the Force:

Force Jump
Force Dash
Infinite Force Sprint
Force Push

Yeah, I know you would also need a . I made one for my level and it was awesome, but also Lightsaber EXTREMELY
 and would need more flow graphs than I'm willing to make. So just.... appreciate what you have. COMPLICATED Greedy little...

http://2.media.dorkly.cvcdn.com/75/16/300e3fdcc8d07317df3ec6d8b2800110.jpg

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

Making a Jedi with the Force in Hammer requires a decent understanding of 13 main entities (and a
desire to get down with the func_):

: All of these entities have a great deal of applications outside of this tutorial, and will likely prove useful regardless of yourNote
project.

game_ui
logic_relay
logic_timer
logic_case
trigger_push
logic_auto

 math_counter (wid cute lil' sheeps)
filter_activator_name
point_clientcommand
point_template
env_entity_maker
env_physexplosion
filter_damage_type

: If it seems like a big list, bear with me. A lot of these are very simple entities, and their uses are (on average)Comfort
extremely straightforward.

So try and familiarize yourself with these as much as possible through the . Each name is hyperlinked, so do dat. Valve Developer Community

I'll try and explain as much as I can as we go, but I only have like, a day to write this thing and AIN'T NOBODY GOT TIME FUH DAT.

You also probably want a degree in Electrical Engineering. So you know... get on that. I'm only kind of joking.

----------------ON TO THE TUTORIAL------------------
Before we start, here is a quick look at what the final player prefab looked like in my level:

https://developer.valvesoftware.com/wiki/Game_ui
https://developer.valvesoftware.com/wiki/Logic_relay
https://developer.valvesoftware.com/wiki/Logic_timer
https://developer.valvesoftware.com/wiki/Logic_case
https://developer.valvesoftware.com/wiki/Trigger_push
https://developer.valvesoftware.com/wiki/Logic_auto
https://developer.valvesoftware.com/wiki/Math_counter
https://developer.valvesoftware.com/wiki/Filter_activator_name
https://developer.valvesoftware.com/wiki/Point_clientcommand
https://developer.valvesoftware.com/wiki/Point_template
https://developer.valvesoftware.com/wiki/Env_entity_maker
https://developer.valvesoftware.com/wiki/Env_physexplosion
https://developer.valvesoftware.com/wiki/Filter_damage_type
https://developer.valvesoftware.com/wiki/Filter_damage_type
https://developer.valvesoftware.com/wiki/Filter_damage_type
https://developer.valvesoftware.com/wiki/Hammer

1.
a.
b.

c.

d.
2.

a.

3.
a.

b.
c.

4.
a.
b.

c.
d.

e.

While this tutorial only covers about 2/5ths of what you see, look closely at the prefab. The player start is in there, deep inside a snuggley coat of
func_. As you can see, , as there is a lot of necessary overlap of entities and a few complex logic loops.organization is critical for this system

EVERYTHING will be built around the entity. info_player_start

Let's get started! First up, a little preparation. These steps are useful for any project, not just this one:

Make a for all of the triggers that can only hit the player. filter_activator_name
Set the " to "Filter Mode" Allow entities that match criteria"
For "Filter Name", type in "!Player" (No quotes, for the love of JEBUS. Using quotes in any dialogue box for any entity will
corrupt your game. It's fixable, but yeesh.)
QUIRK NOTE: The player character can be referenced by any entity using the "!Player" reference name (No quotes, for
the love of GOD). However, you cannot use this to parent ANYTHING to the player explicitly. To parent an object to the
player, you must manually do so at run time using a logic_auto (Basically OnBeginPlay) that calls the SetParent
functions on the desired entities. The entity that !Player references doesn't actually exist until you compile the game.
WOO LOGIC!

This ensures that any trigger using this filter will only ever be activated by the player.
Make another of these filter_activator_name thingamajigs, but use this one to " " for :Disallow entities that match criteria "Filter Name"
"!Player"

This serves as your filter for all triggers you want to ignore the player completely. Its Class Info page is very similar to the above
image.

Get yourself a brand new , the most beautiful entity in the... room.game_ui
If you set the player as the activator using a , you can call inputs using the main Hammer control events, logic_auto including
Left and Right mouse click.
In the send the input to the with the logic_auto, "Activator" game_ui "!Player" Parameter
Quirk: The "Pressed-" and "Unpressed-" outputs from the game_ui represent most if not all of the available KeyDown
and KeyUp events that you can actually distinguish. If you want different things to happen on keyDown and keyUp, you
must use these inputs from a game_ui. Everything else just calls the keyDown twice.

If you plan on doing any custom key bindings or any fundamental changes to the player character, make yourself a Config File.
These are pretty easy to use, and use very basic commands to do some really cool things.
Head to wherever you installed Half Life 2 and find (*cough cough SteamLibrary\SteamApps\common\Half-Life 2\ cough*) \e

. If the folder isn't there, MAKE ONE. YOU ARE A STRONG PERSON WHO DON'T NEED NO PRIOR FOLDERp2\cfg
STRUCTURE.
In this folder, make a basic text document (Right click -> New -> Text Document, jeez)
Name it . LastName_WhatEverTheFlipYouWant.cfg The file extension .cfg is the important bit.

https://developer.valvesoftware.com/wiki/Info_player_start

4.

e.

f.
1.

5.

a.

b.
c.

1.
2.

a.

b.

Quirk: You can use quotes in these documents, so any command you want to use that needs quotes should go in here.
There won't be that many that aren't key bindings, so don't freak out.
In this file, to make entities fire inputs when you press a key, use the format

bind <key> "ent_fire <name of entity> <name of input>" (Only use quotes if you have spaces in the binding
argument. e.g. but not)"bind q "ent_fire Jedi_UI_* FireUser2" bind e +use

Make yourself a and drop that shiz in your level ASAP. This will serve as the ferryman between you and thepoint_clientCommand unde
ad realm of the inner Source engine.

If you just made a config file, fantastic! You can now use a logic_auto to call the input with the ParameterCommand exec
<name of Config File>
On startup, all of your bindings will be executed and your controls will function!
Sort of a Quirk, but mostly housekeeping: You will need to create another Config file that unbinds all of your keys and
restores the control defaults. You will call the input for this new config from the trigger that ends your level, so theexec
bindings don't persist between games. Professor Ouellette has a number of pet peeves concerning leftover bindings,
so don't be that LD.

Enough boring, let's exciting!
First things first, let's get Gordon up and moving like a 2 Liter Jedi Coke bottle full of Darth Mentos!

As stated earlier, for my version of Jedi Freeman, I gave him three cool ways to Force himself through the environment:

Force Jump
Force Dash
Unlimited Sprint

Let's break them down with the func_

Force Jump
Okay, so the Force Jump sound easy enough, right? I'l just make Gordon jump higher! Hehehe so cute.
First thing you need a . A is a converted BSP, so you can make it any shape you want before youtrigger_push trigger_push
convert it to an entity (Ctrl+T). Remember these. Push Triggers are big time super nice for Jedi.

In this case, I made the trigger very wide as this makes it more effective , about (you'll see why in a minute) 256 x 256
. Shown below:x 64

For this to jump the player to a decent height, you'll want these values:

2.

b.

c.

d.

e.

f.

g.

i.

ii.

iii.

3.

Pop that you made earlier into the so these triggers will only affect the player. That is,Player-only filter "Filter Name",
unless you want every physics object near the player to fire upwards like a bullet every time they jump.
A of about serves as a decent jump height. "Speed of Push" 4000 Henceforth, all force units in Hammer shall

. This trigger applies to the player.be referred to as "Hammers" 4000 Hammers
QUIRK ALERT: There is no "Impulse" ability for a push trigger. You can get one from an ,env_physexplosion
but it can be extremely unpredictable, as we will see later. For vertical forces (and ONLY vertical forces), you
want a trigger_push that starts disabled, and you quickly enable and disable with a very short delay (usually
around 0.1 seconds).
 Alright, so you have a push trigger, and you want to push the player. Well, too bad. There are more steps. This next
step in particular has a lot of quirks. Like... a murder happened there or something.
UNCOMFORTABLE AMOUNTS OF QUIRKS: You are immediately going to think, "Oh, I'll just parent this trigger
to the player and tie the enable delay to a relay that I bind to my config file! I'm super smartastic!" You are
wrong.

QUIRK: Triggers, being annoying little brats, refuse to affect pretty much anything in their
parenting hierarchy, especially the player. Parenting any trigger to the player removes all effects. So
how do we fix this?
QUIRKY SOLUTION: Don't parent it to the player, ever. We get to SPAWN A TRIGGER EVERY TIME WE
PRESS THE SPACE BAR. I know, its great.
OTHER QUIRK: No push trigger, or potentially any direction-based entity for that matter, inherits the
parent's rotation when spawned. EVER. They spawn with their default template in terms of their forces
orientation and you just get to deal with that. However, for vertical forces, we can still work with this.
Since Jump always goes up, we don't give a flying fippidy-doo-da that Hammer is a gibbering

.psychopath using its best friend's underwear and some tinsel as a fancy hat
So, now that all of that is off of my chest, lets spawn a push trigger! First up, you need an . Below is aboutenv_entity_maker
where I placed the thing relative to the player spawn. Since we can't parent the trigger, and we've made it VERY WIDE (see,

Placing the maker in front of the player is easy to see and ensures that even a fast told you it would make sense. Yeah.)
moving player will still be in the trigger during its lifetime.

https://developer.valvesoftware.com/wiki/Env_physexplosion

3.

4.

5.
a.

6.
a.

Now, we place a at the center of the jump trigger we placed, close to the floor.point_template

This is going to serve as the- oh wait, hang on...
QUIRK ALERT: The location of the point_template will serve as the origin point for the spawned version. The
entity_maker will spawn the new push trigger using itself as the "new origin" of the point_template push
trigger. Still confused? Yeah, me too. Basically, try and imagine that the point_template is actually the
entity_maker, and then try and imagine where the player will be relative to it. You want the template close to the
floor so the player spends as much time in the trigger as possible.

Now, lets link these crazy kids together!
First off, name the entities. Always name your entities. You can't refence them from other entities otherwise. The

6.
a.

b.

c.
i.

editor will just silently fail and laugh at you and your stupid hair.
Assign the push trigger to one of the many empty template slots in the point_template. Just pick one. Literally any one. I
wish I could tell you it mattered. Be a rebel and use Template 16. Shown below:

Link your to your shiny new in the " ". Shown below:env_entity_maker point_template Point_template To Spawn
Go ahead. Change "PostSpawn Inherit Spawn Angles" to "Yes". You're probably thinking, "Hey, maybe
they updated this entity since this tutorial! I bet this guy is really disappointed! Lol bad luck bro." Well,
for your information BRO, all triggers inherit the player's spawn direction for their volume shapes, but
the directions they apply their forces stay global. And Hammer hasn't been updated since 2005. So
shush.

6.

c.
i.

7.
a.

i.

ii.

i.

Next up, we need to bind the jump button to spawn the Force Jump push trigger.
Create two relays: One that sends the " " input to the , and another one that toggles the firstForce Spawn entity_maker
one. Why do we do this?

QUIRK: Key bindings in Hammer, at bare minimum concerning the almighty Space Bar, are called on
both keyUp and keyDown. This leads to some weird duplicate effects in an already hard
to control system. So toggle that shizzle.
The that DOES THE TOGGLING needs to send the input at and the other logic_relay "Toggle" 0.00 "Trigger"
relay at , or at least some small amount of time greater than 0. This makes the actual "Jump" event only 0.01
happen on Space Bar Down, which feels fairly natural. The relay BEING TRIGGERED should t"ForceSpawn"
he at and at Shown below:entity_maker 0.00 "Kill" <name of jump push trigger> 0.10.

7.

i.

8.

i.

9.
a.
b.
c.
d.

e.
10.

a.
b.

c.
11.

a.

i.

b.

i.
12.

a.

b.

i.
c.

d.
i.
ii.

iii.

Next, Assuming you wish to follow the PC control convention established at the dawn of time byONTO THE CONFIG FILE!!
Computer Jesus, add the line bind space "+jump; ent_fire <name of jump trigger that toggles> Trigger"

You'll notice that we bound both the relay trigger input AND the standard Jump command. Hmm...strange no?
QUIRK: The Player will not be properly affected by push triggers until "Activated" by the Havok physics
engine. This means that unless you slap Gordon in the face with an office chair every time you want to
jump, you need to get him off the ground to ensure proper force application. Binding the +jump event to
the relay input ensures that the player is airborne when we enable the push trigger. Wait, airborne
seriously has an "e" at the end? Well, I've been saying it wrong.

 Alright, so now (hopefully) we have:
 A trigger_push (that, as a template, will be deleted on game start, so no worries on where you place it)
A that references the template Push Triggerpoint_template
An that spawns the push trigger from the env_entity_maker point_template
Two that toggle to remove duplicate key presses and call the input on thelogic_relays "ForceSpawn" env_entity_ma
ker
A in our that calls the toggling on key binding config file logic_relay Space Bar Down.

Now, test it out! When you press Space Bar, you can now get a nice little boost into the sky. Here is where you can play with the
values and find what feels best for you. Here are the major tweak points:

Adjusting the delay until Kill gives the player more time to be pushed.
The height of the Trigger keeps the player inside the trigger volume for longer, a similar effect to the delay until Kill, but
less limited. You want to adjust both for more jump power.
Adjusting the Speed of Push applies more force while the player is in the trigger, and FYI it accumulates per frame

But what's this? You can jump and eventually punch the Sun in its ugly Skyboxy face?!FOREVER
QUIRK: "Oh, well I'll just make it to where the player can only jump when they are on the ground. Good thing I
always think things through!" No. I am rapidly losing hope that you can be saved.

There is no currently known way to backpack off of the built-in jump restriction from Source games. The
player somehow magically knows when they are on the ground, but you never will. Unless you:

COAT THE WORLD IN A THICK, FILMY LAYER OF TRIGGERS THAT RE-ENABLE THE TOGGLING
LOGIC_RELAY AND MAKE YOU GET ALL STICKY!

That's right. Remember all of that free time you thought you had? NOPE.
 Here's how you do it:Nah, its actually not that bad.

Have the that spawns the jump trigger send the Output to the Toggling relay when it gets logic_relay "Disable"
triggered.
Make a out of , about (width doesn't matter), assign it the you trigger_multiple BSP 8 units high Player-Only filter
made earlier, and assign the Input to " the Toggling Relay. "OnStartTouch" Enable"

Also set the to 0.1. Otherwise the re-enabling feels sluggish and unresponsive. "Delay Before Reset"
Shift+Click this base trigger_multiple like a BOSS across every BSP surface in your level the player can reach. It goes
faster than you think. (Be smart and put them in a separate Visgroup. It comes in handy later.)
For Mesh surfaces, you can actually parent a small trigger to the player's feet. But what's this?

 Just kidding, this one actually works pretty well.QUIRK:
Make a small and Assign it the you madetrigger_multiple place it at the player's feet. Non-Player filter
earlier, and give it the same logic as the standard reset triggers that coat your level.
For this trigger, as stated earlier, use a logic_auto to parent this to the player. Typing it manually won't work
because .Hammer

12.

d.

iii.

iv.

13.

a.

b.

HAHAHA THERE WAS A QUIRK: This is a Hammer-wide issue that you have no control over, but the
camera and the player model (aka the !Player parenting reference point) rotate at different rates. This
leads to some WEIRD angular movement of anything you parent to the player when you pan the camera
vertically. Gordon actually just inhumanly leans back like a First Grade Neo akwardly dodging slo-mo
spitballs. In this context, the trigger will only work PERFECTLY when you are looking straight ahead.
The longer you make it back to front, the less of a problem this is, but it also becomes oddly exploitable
(you can get a bunch of free jumps by jumping next to a wall with meshes vertically inside it because
the trigger reaches so far in front of you).

The final element you need for this amazing jump is to remove all fall damage. You will die SO EASILY now that you can jump
three times as high as normal. I know, weird.

Add a entity to your map, doesn't matter where, but (filter_damagetype as seen above, its the little grey box behind the
) I placed mine behind the player for organization.player

Set the " " to " " and the " " to " ". Shown below:Filter Mode Disallow entities Damage type FALL

13.

b.

c.

d.

14.

a.

Last, in a entity, send a " " input to " with the aslogic_auto SetDamageFilter !Player" Parameter <name of your fall
 damage filter>

And your slightly incompetent Jedi is now immune to all fall damage. You'll still hear his shins juicily snap when he lands
though. So, you know. That's fun.

Once you have your safeguards against infinite jumping and the numbers feel tweaked to your flavor, you have successfully
implemented a super jump. What's that? You have very little air control?

What editor did you think you were working in? But that is a nice SEGWAY TO:

Force Dash

This one is much easier than Force Jump, I promise. It's also hilariously hard to control. So its

fair.

 A good physics impact force that actually inherits the players desired movement direction can

only be found in the mysterious env_physexplosion (phys explosion, not phy sexplosion). My

final arrangement is shown below:

1.
a.

b.

You will notice that there are two s behind the player, and two separate What's the deal with that?env_physexplosion logic_relays.
 QUIRK: When the player is grounded, an env_physexplosion applies a much more muted force. This is likely a similar
issue to the need to jump before triggering the jump push_trigger. To have a consistent distance between grounded
and mid-air dashes, you need two separate entities.
So, create two separate physexplosion entities. Make sure they are close enough that the player is within their "Inner Radius"
The Class Info will look similar to below

1.

b.

c.

d.

e.

f.
2.

For the mid-air , you want a relatively low " ". Even is a really powerful dash with the right amountphysexplosion Magnitude 400
of momentum. These entities apply a really strong impact force that scales drastically (at least, in mid-air) with how fast
the player is already moving.
As shown above, I chose to limit the explosion to only affect the " ". This is not required, and really doesn't change the!PLayer
performance. However, the impulse is radial, so if you leave this zone blank you can have physics objects explode away from
you when you dash. Just saying.
You can duplicate this entity and change the " " to a much higher number. My ground-splosion emitted aboutMagnitude 1200

 of force, but please, . They will most likely have a difference of around 1000Hammers tweak these numbers to your liking
between each other.
Don't forget to parent them to the player with a logic_auto! (Since that's the only way you can do it)

You'll then want two logic_relays that individually trigger the separate physexplosions. They will look similar to this, without the "playS
 Output ound" (Unless you already have sounds ready. Aren't you a trooper):

2.

a.
3.

You'll want the relay responsible for the mid-air dash to start disabled.
Next, you need a main relay that will interact with your config file. This relay will look something like this:

a.

2.

a.

This relay fires both dash relays every time, and has a built in self-disable cool down of 3 seconds. Again, tweak this number
to whatever feels best for you.

By now, you are probably wondering: "Wait a minute, how do the relays know when to alternate between each other to change the
Dash intensity?" You just solved that problem in the previous tutorial section! What's that, you just skipped straight to the Dash? Lol

If you skipped the previous section on creating a force jump system, revisit it and skip to the part where you coat the world in
. triggers to re-enable the jump relay This system is what you need. exactly

Just have the triggers send a output to a special relay that . It will look similar to below:Trigger toggles both Dash relays

2.

c.

3.

a.

4.

Call this on the " and " Outputs for each floor trigger. You can bulk select all of them (StartTouch" EndTouch" in that Visgroup
and add these outputs all at once. No seriously, its that easy.that you responsibly created, right?)

Finally, just add the key binding to your Config File. The line, again, will look like: bind <key> "ent_fire <name of Dash Activate Relay>
Trigger"

I chose as my due to its but pick your own "Q" dash key and close proximity to WASD lack of use in Vanilla Half-Life 2,
poison.

What's that? The impulse force doesn't update its orientation in mid-air until you land? MUAHAHAHAHA seriously let me know
if you solve that. It's really annoying.

Infinite Force Sprint
Full disclosure, this one is a joke. Seriously, its barely even a section.

It doesn't even deserve a numbered list.

It needs no pictures, as there are less than 1,000 words needed to describe it.

You need a and a point_clientcommand logic_auto (If you don't have these, make them. Forge your own path of RIGHTEOUS
LOGIC).

In the , send the the Output: with the logic_auto point_clientcommand command Parameter sv_infinite_aux_power 1

There you go. Be sure to set it back to 0 in your Unbind Config File.

Force Push
Here be Dragons, friend. Not as many Dragons as the tutorial I chose not to write, but still. func_brush Lightsaber .BEWARE

Now that we've gotten the player jumping and dashing around like a Super-Sayan monkey with ADD-Rabies, let's give them a weapon.
Here, we will give the player a multi-stage, chargeable Force Push that gives the player a great deal of impact on the game world. Half Life
2 is a very Physics heavy game, and it is wise to take full advantage of that.

The difficulty of this concept depends on how far you want to go with it. In this tutorial, I will cover a basic triple-tier force push with a charge
timer. You can expand this to as many levels, strengths, and crazy other applications your crazy eyes desire.

1.
a.

b.

i.

This funnel cake of madness is the final layout of my 3 main Force Push triggers (technically there are 4 in there, but the last one
was special and isn't relevant). I chose the increasing size of each trigger to correspond with a larger push force and effect
range. It also looks a lot like a Dragon Shout, so at least two birds were killed in this process.

 Here is what the final logic sequence will look like, give or take (ignore the little dancing people): env_shake

Alright, so let's snort some confidence and light this candle!

First, a quick run-down of the logic we'll be making here:
We use the Pressed and Unpressed events from a to trigger two separate , one that starts the charginggame_ui logic_relays
and one that releases the Force (a.k.a. JOHN CENA)
On Charge start (), a is enabled that, every (x is up to you, I usedwhatever input you chose goes down logic_timer x seconds
0.65), adds to a . 1 math_counter

1.

b.

i.

ii.

c.

i.

d.

i.

ii.
2.

a.

b.

c.

d.

3.

a.

Each time this counter gets updated, it calls an output called " , which uses the " " input of a OutValue" InValue logic_cas
 to pass its value along.e

The then uses that number to activate a output to enable one of three s and disable thelogic_case case logic_relay
remaining two. Each of these relays contains the logic to activate one of the three Force Push Triggers

On Charge Release, the charging timer is disabled and a main Activator relay gets triggered, calling the trigger input on all three
force push relays. Only the one that is enabled has its logic called. These usually activate their specific push trigger for about 0.1
seconds

You likely want to impose some type of cooldown here, so the Activator relay will disable the Charge relay on trigger,
and re-enable it after a set delay time (1.25 seconds feels pretty good).

For usability, if the player attempts to restart Charging before the cooldown is over, I added a special logic relay at the end. This
special Restart relay is told by the Activator relay to re-trigger the Charge relay after the cooldown ends. It starts disabled by
default, and the moment it fires, it re-disables itself.

We enable and disable the Restart relay on mouse up and down, so if the player has the mouse held down (Pressed
has been called but not Unpressed), it will automatically re-trigger the relay.
This small addition made using the charged force powers feel 200% better. Turns out people really hate to wait.

First off, let's make the volumes for our actual Force Powers. Make these out of in whatever shape you want. I chosetrigger_push BSP
the funnel shape as that feels the most intuitive and functions the best with the weird camera-panning that Gordon does.

You will need a separate for each different charge level of your Force Powers. Shape them with the , thenBSP Vertex Tool
convert them to .trigger_push
Now, any good scripter worth their salt understands how redundancy is great for efficiency in logic systems. So you may be
asking, "Why not make just one volume and adjust its size and Push Speed dynamically at run-time?" Don't worry, you'll learn
how this works eventually.
QUIRK: Hammer doesn't allow the changing of many random key attributes of converted BSP entities (and others for
that matter). You can only set them explicitly in the editor and make separate versions entity for every required
variation.
 So each will be a different level of your charged Force Push. Name them appropriately, as referencing is key fortrigger_push
this next section.

Next, we need the relay that starts it all! Create two logic relays that look like the ones below, one for Charging and one for Releasing,
respectively. The Releasing Relay starts disabled.

3.

a.

4.
a.

b.

Now, the timer that adds a level of charge every x seconds.
This entity starts and uses the " " Property to determine timer length. Below is the outputs:disabled Refire Interval

4.

b.

5.
a.
b.

Now we have the math_counter that keeps track of the charge level:
The maximum legal value should be the number of charge levels you have.

5.

b.

6.
a.

b.

The is next, controlling which are enabled at each charge level. logic_case logic_relays
It will have as many cases as you have charge levels, each with an appropriate charge number as their value. The associated
number determines which Case Output is called, so map it appropriately.
You can also use this to apply any charge effects or sounds, like or Theseenv_shake, ambient_generic, env_screenoverlay.
are basically free events for when the player reaches a certain charge level, so use them wisely.

6.

b.

7.

a.
b.

The case enables/disables the relays that control which push trigger activates. The following is only one of the 3 relays, but they will all
always use the same logic pattern to activate its appropriate trigger_push.

Replace the force_* with whatever you called each for each individual charge level.trigger_push

7.

b.

8.
a.

i.

b.

Once the player releases the Force, we immediately trigger the Activator Relay!
This activates all of the relays responsible for enabling the entities.trigger_push

You can see that, in the first output line of the example picture, you can use an asterisk at the end of a shared entity
name. For Example, you could call all the charge level relays where the is the and use chargeRelay_# # charge level c

 to call the " input for each one with one Output line.hargeRelay_* Trigger"

8.

b.

9.
a.

And last, but certainly not least, the all powerful Restart relay!

9.
a.

10.
a.

b.

c.

11.

a.
b.

i.

c.
d.
e.

Now you have all of the logic set up for this charge system!
Alternately, if you just wanted a just remove every relay except for the and the Single Force Push Burst, Activate Relay Resta

, and have the Activate Relay re-enable itself after the delay.rt Relay
Fun fact, relays can still send out their Outputs even after being disabled! If you want a node to disable itself, just do it
straight away. You don't need to delay it until after all other Outputs are sent. However...
QUIRK: If you want a relay to stop sending its current Outputs, you can't just disable it. It keeps on kicking until it gets
closure, like a really devoted ghost or something. You need to send a "Cancel Pending" Input to a logic entity to have it
empty its Output queue.

Finally, in order to have a charging mechanic for your force push, you need to take advantage of either the or inputs in aAttack1 Attack2
 entity (Basically Left and Right Mouse)game_ui .

This is because you need a different event to happen on KeyDown and KeyUp.
These inputs will trigger the two separate , one for and one for . Why not just use one relaylogic_relays Charging Releasing
and the User 1-4 Inputs you ask?

ITS BEEN A WHILE SINCE A QUIRK: The User 1-4 inputs on every entity will activate when called regardless of
the enabled state of its owning entity. Basically, if you ever want to disable a relay or any entity to prevent its
functionality when triggered, you can't use User events for it. As such, we use two relays, each with all of their
logic on the Trigger Output.

If you don't have a game_ui entity already, drag one in.
Assign the for left mouse or for right mouse to " " your PressedAttack PressedAttack2 Trigger Charge Relay.
Then assign the version of the same input you just picked to Unpressed Attack "Trigger" your Release Relay.

After that, you should have a working system! Rip it apart and Frankenstein it to your demented heart's content!Force Push

Conclusion:
So theoretically, you now have a good starting Jedi player now! That is, assuming you didn't just skip around and only do the fun parts.

Overall, the concept of a Jedi is something that is very possible in Hammer. With enough time and stepping on previous students
shoulders, we could make a fairly comprehensive control system that feels and plays absolutely awesome. Maybe a future cohort will
implement with or even using entities! We also have a lotForce Lightning randomized func_brush lightning Mind Tricks ai_relationship
of past Star Wars games to pull inspiration from. And no matter what, make sure that plays in the background ofDuel of the Fates
whatever you ship!

https://www.youtube.com/watch?v=qzVBqBosf5w

Hopefully you had some fun and learned a lot more about Hammer than you actually needed to do the specific task you came to this guide
for. Its a great engine that is worth the time it takes to build in it.

Either way, here's Kermit being way more excited about your success than you are!

Also, listen to duel of the Fates while watching this. Seriously.

Click on .Gif for reference link

How to Jedi with the Force

Making Custom Materials (Of Various Complexities) for Hammer

https://wiki.smu.edu/display/guildhall/Making+Custom+Materials+%28Of+Various+Complexities%29+for+Hammer

	How to Jedi with the Force

